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A finite-element formulation of the solution of problems of the stability of non-circular cylindrical shells taking into account 
their bending moments  and the non-linearity of their precritical stress-strain state in proposed. Explicit expressions for the 
displacements of the elements of non-circular cylindrical shells as rigid bodies are derived by integration of the equations obtained 
by equating the components  of the linear strains to zero. These expressions are used to construct shape functions of an effective 
quadrilateral finite element of the natural curvature. An effective algorithm is developed for investigating the non-linear 
deformation and stability of the shells. The stability of a cylindrical shell of elliptical cross-section under  transverse bending is 
investigated. The influence of the ellipticity and non-linearity of the deformation on the shell's stability is determined. The results 
of the analysis are compared with experimental data. © 2004 Elsevier Ltd. All rights reserved. 

The stability of non-circular shells has been insufficiently investigated, unlike the stability of circular 
shells. Thousands of publications exist on circular shells, but only a few dozen on non-circular ones. 
This can be explained by the less extensive use of non-circular shells and by the difficulties encountered 
in solving problems with variable radii of curvature, which lead to the presence of variable coefficients 
in the equations of stability. Existing solutions of stability problems are obtained by analytical methods, 
and, as a rule, using a linear approximation and ignoring the bending moments and the non-linearity 
of the precritical state, i.e. using the classical formulation. 

1. THE D I S P L A C E M E N T S  OF F I N I T E  E L E M E N T S  OF N O N - C I R C U L A R  
C Y L I N D R I C A L  S H E L L S  AS R I G I D  BODI ES  

For displacements of the elements as rigid bodies, the components of the strain are equal to zero. By 
equating the linear components of the strains, the changes in curvature and the torsion to zero [1], we 
obtain the equations 

e I = U x = O, £2 = kz (1913+w)  = O, e 3 = 1 9 x + k 2 u ~  = 0 
(1.1) 

~1 = Wxx = O, ~2 = kE[kE( 19 -w [ I ) ] l l  = O, ~3 = [ k 2 ( 1 9 - w ~ ) ] x  = 0 

Here u, 19 and w are the tangential displacements and deflection, R is the radius, k 2 = R -1 is curvature 
of the cross-section, [3 is the angle between the normal to the cross section and the axis b of the cross- 
section, and x is a longitudinal coordinate (Fig. 1). The subscripts x and [3 denote differentiation with 
respect to the variables x and 13. 

Let us integrate Eqs (1.1). From the penultimate equation of (1.1), we have 

19 = w13 + R C  5, C 5 = const (1.2) 

From the second equation of (1.1) it follows that 

w = -1)13 (1.3) 

Taking this equality into account, from (1.2) we obtain the equation 

19fff~ + 19 = R C  5 
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the solution of which has the form 

1 9 = C 3 c + C 4 s + 1 9 , ;  c = cos[3, s = sin~ (1.4) 

A particular solution Vn of the non-homogeneous equation is found by varying the arbitrary constants 
C3 and Ca. After calculations we have 

19 = C3c + C4s - C5(~l/lC ar ~/2 S) 4- C7c at. C88 

W = C3s - C4c - C5(~/is - V2 c) + C 7 s -  C8c (1.5) 

~l I = f g s d ~ ,  V2 -~ - f g c d ~  

The fourth equation of (1.1) is satisfied by setting 

C 7 ~- Czx  , C s -- - C 1 X  

As a result we obtain 

I) = C3c + C4s - C5(lk[/ic + ~/2 S) 4- (C2c  - C i s ) x  
(1.6) 

W = C3$ - C 4 c -  C5(~/1$ - ~/2 c) -4- (C2s ÷ C i c ) x  

From the third equation of (1.1) we find 

u = C l W  l + C2q/z+ C 6 (1.7) 

The functions (1.6) and (1.7) satisfy Eqs (1.1), and, therefore, in the linear approximation, the correspond 
to the displacements of the elements as rigid bodies. 

2. THE F I N I T E  E L E M E N T  AND AN A L G O R I T H M  FOR 
SOLVING THE P R O B L E M  

We will divide the shell by lines of principal curvatures into m parts along the generator and into n 
parts along the director. Hence, the shell will be represented by a set of m x n curvilinear rectangular 
finite elements (Fig. 1). Using a bilinear approximation of the deformational tangential displacements 
and a bicubical approximation for the deflection, taking expressions (1.6) and (1.7) into account, we 
will write the following expressions for the total displacements of the points of the finite element 

u = a l x Y  + a2x + a3Y + a 4 + a 6 ~  2 + a20~/l 

19 = a 5 x y  + a6xc  + a7y + a8(~1/lC + ~1/25 ) - o~20xs Or a23c - aE4s 

3 3 + alox3y2 3 3 + a13x2y3 2 2 2 2 
W = a9x y + a l l X  Y + a l 2 x  + a l 4 x  y + a l s x  Y + a l 6 x  + 

+ al7xy3 + al8xy2 + al9xY + a20xc + a21y3 2 + az2y + a23s + a24c + a6xs  + a s ( ~ l S  - ~i/2c ) 

(2.1) 

or in matrix form 

ii = Pa; /i = col{u, 19, w}, a = col{a 1 . . . . .  a24 } (2.2) 

where fi is the displacement vector for points of the finite element's middle surface, a is the vector of 
the unknown coefficients a i of the polynomials in relations (2.1), and P is a connection matrix of order 
3 x 24, the elements of which are multipliers of the coefficients ai in relations (2.1). 

Expressing the coefficients ai in terms of nodal unknowns, we obtain 

a = B - l f i  

fi = COI{Ui, 19i, wi, 01i, 1~2i, Wxyi, uj, 19j, wj,  Olj ,  1~2j, Wxyj, Uk . . . . .  Wxyk, Un . . . . .  Wxyn} 
(2.3) 

where fi is the vector of the nodal displacements, angles of rotation and mixed derivatives of the 
deflection, and B is a matrix of order 24 x 24, the non-zero elements of which have the form 
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b~j = Pl j ,  b2j = P2j, b3j = P3j, b4j = (P3j)x, bsj = ( P 2 j - ( P 3 j ) y ) / R ,  

b6j = (P3j)xy ( x = - a l ,  y = - b l ) ,  b7j = Pl j ,  b8j = P2j, b9j = P3j, 

bloj = (P3j)x, bllj = ( P 2 j - ( P 3 j ) y ) / R '  bl2j = (P3j)x~ (x = - a l ,  y = bl), 

bl3j = Pl j ,  bl4j = P2j, blsj  = P3j, bl6j = (P3j)x, bl7j = (P2j - (P3j )[~) /R,  

bl8j = (P3j)xy (X = a 1, y =-bl ) ,  bl9j = Pl j ,  b20j = P2j, b21j = P3j, 

b22j = (P3j)x' b23j = ( P 2 j -  (P3j)y) /R,  b24j = (P3j)xy (x  = al, y = b l ) ,  

j = 1 . . . . .  24, a I = Ll(2m), b I = ll(2n) 

(2.4) 

were L and l are lengths of the shell's generatrix and direction respectively. 
Substituting expression (2.3) into (2.2), we obtain the dependence of the displacements of the 

element's points on the nodal unknowns 

fi = p B - l f i  (2.5)  

There are six unknowns in each node, so every finite element has 24 degrees of freedom. We determine 
the nodal unknowns using Lagrange's variational equation 811 = 0, where H is the total potential energy 
of the shell. The expression for the potential energy is written using the non-linear strain-displacement 
relations [1]. The equation 8YI = 0 leads to a system of non-linear algebraic equations for the nodal 
unknowns. This system is solved by a step load method using the Newton-Kantorovich linearization 
method at each step, the equation of which can be written for the finite element in the form [2] 

H(fin) 8fi = qe G(f i") ,  f i . + l  - .  - = u + S f i  (2.6)  

Here H is the Hessian matrix of the finite element, which is determined from the second variation of 
the strain potential energy, qe is the vector of the nodal load and G is the potential energy gradient. 

Equations of the type (2.6) for the whole shell are constructed [3] in the usual manner taking the 
boundary conditions into account. The boundary conditions are imposed in the following form: for the 
zero-valued nodal boundary displacements, their corresponding row of the Hessian matrix H and the 
corresponding component of the nodal load vector are set equal to zero, and a large number is substituted 
in place of the diagonal coefficient in the matrix H. 

We will seek a solution of the system of linear algebraic equations (2.6) by Crout's method using the 
factorization H = LTDL of the Hessian matrix into a diagonal matrix and two triangular matrices. The 
nodal displacements obtained are used to calculate the stresses and strains by well-known formulae. 
The stability is monitored by checking the positive definiteness of the Hessian matrix, which reduces 
to checking the positiveness of the elements of the diagonal matrix D. The occurrence of negative 
elements corresponds to the shell's loss of stability. 

After finding the value of the loading parameter, for which the equilibrium state is unstable, the form 
of the shell's loss of stability is sought from the solution of the system H8 = 0, where 8 is the vector of 
bifurcational nodal displacements. For this purpose, we find one linearly dependent (degenerate) row 
of the matrix H, corresponding to the first negative element of the matrix D. The elements of this 
row and of the corresponding column of the matrix It are set equal to zero. A unity is put in place of 
the diagonal coefficient and the corresponding column, multiplied by the precritical displacement, 
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corresponding to the degenerate row, is transferred to the right-hand side of the system. From the 
solution of the system thus obtained, the form of the shell's loss of stability is sought. The algorithm 
described is implemented by a computer program. 

3. N O N - L I N E A R  D E F O R M A T I O N  AND S T A B I L I T Y  OF C Y L I N D R I C A L  
S H E L L S  OF E L L I P T I C  C R O S S - S E C T I O N  F O R T R A N S V E R S E  B E N D I N G  

Consider the problem of the non-linear deformation and stability of a cantilever (u = v = w = %) 
cylindrical shell under a transverse force Q, applied at the free edge. In this case 

2 ~ a2b 2 d 2 2 2 b 2 2 
z + = 1, R = = a s + b2c 2, ~ 1  = c a s 
b 2 a ~ ' - ' ~ '  ~112 = - ' - ~  

The shell is strengthened by a rigid frame on the loaded side. The shell has a length L = 300-1100 mm, 
a thickness h = 2.5-5 mm and an equiperimeter radius of cross-section R0 = 1000 mm (the equiperimeter 
radius of an ellipse is defined as the radius of the circumference that has the same perimeter as the 
ellipse). The shell is made of a material with a modulus of elasticiting E = 0.7 × 105 MPa and a Poisson's 
ratio of 0.3. 

Numerical investigations were made under assumption that the deformation was symmetric about 
the plane of longitudinal cross-section of the shell. In this case the shells were cut along the minor axis, 
and the symmetry boundary conditions (u = Wy = Wxy = 0) were imposed along the section line. Half 
of the shell was divided into 30 finite elements along the length and into 60 finite elements along the 
circumference. 

For h = 2.5 and 5 mm, Fig. 2 shows graphs of the parameter  ks = Q*/Qo against the ellipticity 
parameter  a/b for linear (the dashed curves) and nonlinear (the solid curves) initial stress-strain states 
and for different lengths of the shell (Q* is the critical value of the transverse force, Q0 = ~RoSb, 

5/4~ 1/2 Sb = 0.78CEh(h/Ro) (Ro/L) is the upper critical shear force for the twisting of a circular cylindrical 
shell with radius R0, and C = 0.93 is an empirical coefficient). When the ellipticity parameter  increases, 
the values of kr first increase, reach a maximum, and then decrease; this is explained by the increase 
in the curvature in the region of the largest shear forces. The influence of the non-linearity of the initial 
state is small over practically the whole range of variation of a/b for all lengths and thicknesses of the 
shells. 

Figure 3 shows graphs of the parameter ks against the shell's length for different values of the 
parameter  a/b. 
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Figure 4 shows graphs of the parameter k~ against the parameter a/b for R 0 = 44 mm and h = 0.05 mm 
and experimental results [4] (the light circles correspond to the shell's loss of stability and the dark circles 
correspond to the loss of the shell's bearing strength). It can be seen that the values of the critical loads 
for elliptical shells are lower than for circular shells. For elliptical shells with a/b < 1, the results of 
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Table 1 

a/b 10 x 13 

0.4 1.48 
1 1.24 
2.5 0.87 

m X n  

15x20 20x27 25x33 10×40 [ 20×40 25:<40 30x40 
i 

L/R o = 0.5 L/R o = 1 
1.28 1.125 1.125 0.545 I 0.77 I 0.73 0.73 
1.13 1.18 1.18 1.19 I 1.19 [ 1.08 1.08 
0.81 0.79 0.79 

calculations are closer to the experimental values (shown by the light circles) and for elliptical shells 
with a/b > 1, the results of the calculations are closer to the experimental values (shown by the dark 
circles). 

The forms of the loss of stability for shells with L = 1100 mm, h = 2.5 ram, a/b = 2.5 mm and 
a/b = 0.4 mm are shown in Fig. 5. It can be seen that high shells, like circular ones, loose stability mainly 
doe to the effect of the shear forces, with the formation of three inclined on the side surface, while 
shallow shells loose stability due to the simultaneous effect of compressive axial forces and shear forces, 
with the formation of one to three inclined folds on the lower part of the shell. This probably explains 
the above-mentioned agreement between the calculated and experimental values of the critical load. 

The convergence of the solution as the number of finite elements increases, for shells with 
Ro/h = 200 and L/Ro = 0.5 and 1.0 is shown in Table 1. 
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